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A comparison of some lower bounds for eigenvalues of 
Schrodinger’s equation 
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Department of Applied Mathematics, University of New South Wales, PO Box 1, Kensing- 
ton, NSW 2033, Australia 

Received 24 January 1983 

Abstract. A method proposed recently by Singh of finding lower bounds to the eigen- 
energies of Schrodinger’s equation is reviewed and compared with the methods of Bazley 
and Fox and of Lowdin. Numerical results for an anharmonic oscillator suggest that the 
Singh method is less accurate than the others, but unlike the Lowdin single bracketing 
function technique does not suffer from any eigenvalue ordering problems. 

1. Introduction 

Upper bounds to the eigenvalues of the time independent Schrodinger equation 

where H is the Hamiltonian of the system, are readily obtained by the traditional 
Rayleigh-Ritz variational method. Lower bounds are less easily calculated but are 
necessary to locate the eigenvalues with certainty. This objective has led to the 
derivation of several methods to obtain lower bounds (see e.g. Temple 1928, Bazley 
and Fox 1961, Lowdin 1965a, b, Reid 1976, Hill 1980, Singh 1981 and other 
references cited in these papers). Some of these methods, notably those of Bazley 
and Fox (1961), Lowdin (1965a, b) and Hill (1980), are capable of producing lower 
bounds to both ground states and excited states of considerable accuracy. In a recent 
paper, Singh (1981) has proposed what appears to be a new method of constructing 
lower bounds that moreover yields a sequence of improving bounds. No numerical 
results are reported, however, so it is difficult to assess the practical significance of 
Singh’s procedures. This is the main aim of this paper. In addition, we compare and 
contrast the formal basis of Singh’s method with the Lowdin theory. 

The paper is arranged as follows. In 9: 2 we review the formalism developed by 
Singh and compare it with that of Lowdin. Section 3 illustrates the procedure by 
explicitly evaluating lower bounds to a number of energy levels of an anharmonic 
oscillator. These bounds are compared both in accuracy and computational effort 
with other bounds in S: 4 and the paper closes with an overall discussion and assessment 
in S: 5. 

@ 1983 The Institute of Physics 3291 
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2. Singh’s procedure 

2.1. Formal results 

Consider a Hermitian operator H of the form 

H = Ho+ v, (2.1) 

where H ,  and V are Hermitian with V 2 0 .  The eigenvectors IE;,) and eigenvalues 
E: of H ,  are assumed known and ordered such that E:) <E:)+’. We shall also require 
that 

E:, < 0 for j <JO. (2.2) 

This can, however, usually be arranged by a simple redefinition of the energy zero. 
Our aim will be to bound from below the eigenvalues E’ of H satisfying 

HIE’) = E’IE’). (2.3) 

Define the orthogonal projections 

(2.4a, b )  

together with 

H =Ro+ v = H0Oo + v = Ho -HOP()+ v. (2.5) 

For notational ease, we shall denote the spectrum of an operator G by a ( G ) ,  its 
image by Image(G) and the linear span of a set {)q5k)}T=~ by Spank=l.,{/d )}. 

The Singh procedure depends upon using (2.5) to rewrite the eigenvalue equation 
(2.3) of H as 

(f -E)IE) = -H,PoIE). (2.6) 
This may be regarded as an implicit set of equations for E and IE) which can be 
‘solved’ whenever E a  a ( H ) .  In this case, we may write 

\ E )  = ( H  -E)-’Po(-Ho)PolE). (2.7) 

k 

Following Singh, we define 

lP(E)) = (-H”)1’2Polm. 
In view of (2.2), - I fo  is positive on Image(P,) so that IP(E)) is non-zero whenever 
(EhIE)#O for some j in O s j s J o -  1. The factor (-Ho)’” appearing in (2.8) is not 
entirely necessary but it does simplify subsequent formulae. 

Equation (2.7) still represents an implicit set of equations for E and IE), which 
can obviously be rewritten as 

[ E )  = (f -E)-1P”(-H”)1’2(P(E)). (2.9) 

Multiplying on the left by ( - H o ) ” 2 P ~  yields the eigenvalue problem 

lP(E)) = 3(E)IP(E)) ,  (2.10) 

where 

B ( E )  = ( -H”)1’2Po(f i  -E)-’Po(-Ho)1’2. (2.11) 
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Now we can identify IP ( E ) )  as an eigenvector of 3 ( E )  in Image(Po) with eigenvalue 
unity. Moreover, recalling (2.9), ] p ( E ) )  is rotated into ] E ) ,  an eigenvector of H, by 
the operator ( R  -E)- 'Po(-Ho)' /2.  

It is natural now to examine the J o  eigenvectors Ip ' (z))  in Image(Po) and their 
associated eigenvalues p ' (z )  of 

W ( z )  = (-H")1'2Po(H -z)-1Po(-H") ' /2 .  (2.12) 

Let us confine our attention for a moment to one eigenvector Ip(z)) of ~ ( z )  in 
Image(Po). Since 3 ( z )  is continuous for Z E  a(R) it follows that p ( z )  is also continuous 
on this set (Singh 1981). Hence, given that 

(2.13) 93 (z)lP(z)) = P ( z  )IP(z)) 
we define the 'trial wavefunction' associated with P ( z )  by 

12) = (R  -z)- 'Po(-H,)) ' '*~P(Z)) .  (2.14) 

The significance of those vectors Ip(z)) for which P ( z )  = 1 can be seen if we compute 

( H  -2) jz)  = ( i f - 2  +H,,Po)(R -z)-'Po(-Ho)''2~P(Z)) 
= [l +HoPo(R -z)-'l~"o)''2/P ( z  1) 
= (1 -Pcz))P~~(-H")"21P(z)) .  (2.15) 

Thus P ( z )  = 1 implies (H -2) lz)  = 0, which together with (2.7)-(2.11) establishes a 
correspondence between the eigenvalues E of H such that (EblE) f 0 for some j <Jo 
and the values of z for which 33 ( z )  has an eigenspace in Image(Po) with eigenvalue one. 

(Y = 1, 2 ,  . . . , k, be k linearly independent eigenvectors of H with eigenvalue E where 
EE a(R). Defining 

IP(E))u = (-H,))'"PO/E)a (2.16) 

we see that IP(E)), satisfies (2.10) for all a with @ ( E ) =  1. Moreover, using (2.9) it 
is straightforward to show that the vectors Ip(E)), are linearly independent and hence 
the eigenspace of 93 ( z  ; z = E )  with eigenvalue unity is at least k-fold degenerate. 

A similar investigation of (2.9) reveals that, for € E  a ( H ) ,  the existence of k linearly 
independent eigenvectors IP(E)), of W(E) satisfying (2.10) implies the existence of 
k linearly independent eigenvectors IE) of H with eigenvalue E. Hence we conclude 
that for all Z E  a(R), B(z) has a k-fold degenerate eigenspace with eigenvalue unity if 
and only if z is a k-fold degenerate eigenvalue of H. 

To illuminate this correspondence further, especially regarding the importance of 
a( i f ) ,  suppose E is a k-fold degenerate eigenvalue of H. Let also J0 be such that 
k >Jo.  Hence the eigenspace of B(E) with eigenvalue unity is, at most, of dimension 
Jo, contradicting the proposed correspondence. Hence, we must have E E a@), which 
can be understood as follows. 

In the k-fold degenerate eigenspace of H with eigenvalue E, there exist at least 
k - J o  linearly independent vectors orthogonal to Image(Po). Let IE) be such a vector; 
then 

(2.17) 

so that E E o(R). Now, although E E a@) implies that ( R  -E)-' does not exist, we 
notice that the eigenspace of r? with eigenvalue E is orthogonal to Image(Po) and 

The preceding analysis is easily generalised to degenerate eigenvalues. Let 

HIE) = (R +H&)lE) = RlE)  = E / E )  
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hence (H-,!?-’ is finite on Image(Po), implying in turn that %’(E) is bounded. 
Similarly, each of the other linearly independent eigenvectors of H with eigenvalue 
E and a non-zero overlap with Image(Po) forces the existence of an independent 
vector = 1) in Image(Po) satisfying (2.10). The same type of mechanism also 
takes care of disjoint sectors of H. 

We turn now to the singularities of the functions p (2). These can only occur when 
z E ~ ( H )  and, as we have just seen, need not always occur then. What is necessary 
for some of the /3’s to become singular at z = E  E a ( f i )  is a non-zero overlap between 
Image(Po) and the eigenspace of 14 with eigenvalue 8. Denote by Z? the projection 
of this eigenspace of 14 onto Image(Po). It is easy to see that, as z -+E,  a subspace 
of Image(Po), equal in dimension to e, will become an eigenspace of 23 ( z )  associated 
with a diverging eigenvalue. The Hermiticity of a(z) as z + E  ensures that the rest 
of 3 ’ s  eigenvectors, being orthogonal to the diverging eigenvectors, are rotated 
orthogonal to these diverging eigenvectors quickly enough as z + E  to escape diver- 
gence themselves. This heuristic argument suggests that there is a one-to-one corres- 
pondence between the number of functions p ( z )  that diverge as z +8 and the number 
of linearly independent vectors in Z?. 

Whenever /3 is regular dp/dz follows from the Feynman-Hellmann theorem (Singh 
1981). Explicitly, 

dp/dz = ( P ( z  )/d%’/dz I@ ( Z  1) = ( p  ( 2  )I(-HO)”~P~(H - z )-*Po(-Ho)”*1p ( Z  )) 

= ( 2  12) > 0 for lz) z 0.  (2.18) 

On the other hand, if / z ) = O ,  then (2.14) implies that (-Ho)”2Po~/3(z))=0 which 
contradicts the fact that Ip(z)) is a non-zero eigenvector. Thus dp/dz > 0  whenever 
p ( z )  is regular. 

Equation (2.18) and the pole structure of the p ( z )  functions lead us to conclude 
that if we trace the behaviour of one eigenvalue of B ( z )  as z varies over the reals 
we obtain a function p ( z )  something like the function depicted by full curves in figure 
1 

Figure 1. Typical behaviour of the p functions involved in a J, ,  = 2 calculation on a 
Hamiltonian with non-degenerate eigenvalues and no disjoint sectors. The function 
depicted by_ full curves picks up E”, E’, E4 . . . and is singular for E’  such that (E’Ij3(E’)) # 
0, that is E”, E’,  E4.. . . The other eigenvalue of B(z)  is depicted by broken lines and 
picks up E’, E’, . . . . 
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The criterion, @ ( z )  = 1, for an eigenenergy of H is conveniently recast as a fixed 
point problem (Singh 1981). Let a ( z )  be defined by 

P l z  1 = (E,-a (2 ) ) / ( E ,  - z ), E,@ o w ) .  (2.19) 

(2.20) 

where 

d ( ~ )  = E,Po- ( E ,  - z ) % ( z )  =E,P(,+(-Ho)"'Po(H- E , - H  + z ) ( H  -z)-'Po(-Ho)l'* 
(2.21) = (E ,  + H,,)P,, + (-Ho) 1'2Po(H - E,) (H - 2 ) -  lPO( -Hd l'*. 

Setting A = I? -E ,  we obtain 

d ( z )  = (HI) + E,)Po + ( -Ho)'/*P&[A2 + (E ,  - Z)A] - 'AP, ! ( -H~) ' '* ,  (2.22) 

which is the basis of Singh's exposition. There is a peculiarity at z = E ,  where 

d(E , )  = E,Po. (2.23) 

So Image(Po) is an eigenspace of ;?P(E,) associated with the eigenvalue E,. Apart 
from this exception at z = E ,  there is a one-to-one correspondence between the fixed 
points z *  of a ( z )  and the solutions to P ( z )  = 1. 

Since we are only interested in Image (PI,) when finding eigenvectors of d ( z ) ,  we 
may regard d ( z )  as a finite-dimensional matrix. The operator = (Ho+E,)Po is 
thus regarded as a Jo xJ , ,  diagonal matrix with respect to the basis {lE!l)};:;ll and 

v ( Z  ) L- & ( z )  - 3"" = (-H(l) "2P(p4 [A + (E ,  - z)A]-'APo( -HI)) ' / *  (2.24) 

as a J o  x J o  perturbing matrix. 

2.2. Lower bounds 

Figure 1 suggests that finding lower bounds to z *  such that p(z * )  = 1 could be 
accomplished by finding a function P,,(z)  which upper bounds P ( z )  on the entire real 
line. Singh's method is less ambitious in that it upper bounds the p(z) 's in the interval 
(-CO, E,). This is done by finding a ,  (I) which are lower bounds to a (z)  on the interval 
(-00, E,). The P n ( z )  defined by 

P n  (2) = ( E ,  -an (2 ))/Eu -2 )  (2.25) 

then have the required bounding property. 
To iower bound a ( z )  it is necessary to find an operator lower bound to ;?P(z), 

which can be achieved by modifying the V(Z) term (2.24). The success of the method 
requires the positivity of V(Z) which is in turn assured by the positive definiteness of 
A .  This imposes the following conditions on E,: 

E ,  < E$],  E, < 0. (2.26) 

It is also desirable to make E ,  as large as possible so as to lower bound as many fixed 
points as possible. The condition 

E:,"-' < E ,  

would seem reasonable. 

(2.27) 
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Following Singh we approximate the operator 

F ( z )  =A[A2 + (E,-z)A]-’A (2.28) 

from below by a sequence of operators { f i n ( z ) }  obtained using Bubnov-Galerkin 
approximations (Mikhlin 1964, Singh 1977, 1981). Let l a )€  Image(Po) and define 

(2.29) I f )  = [A * + ( E ,  - z)A]-’A I Q ) ;  
then I f )  satisfies 

[AZ + ( E ,  - ~ ) A ] l f )  =Ala ) .  

Defining 

L ( ~  = + ( E ,  - z )A 

and 

Ia’)=AIa)  

(2.30) 

(2.31) 

(2.32) 

equation (2.30) becomes 

L(z)lf)  = la‘). (2.33) 

The Bubnov-Galerkin method approximates I f )  with the finite sum 

(2.34) 

where {14k)}E==l is a set of vectors in the domain of A.  The ck are then determined 
by requiring that the ‘error’, Llfn)  - la’), be orthogonal to Spank = {I4 ‘)}. This 
leads to the set of equations 

(2.35) 

(2.40) 

(2.41) 

(2.42) 



Bounds for eigenvalues of Schrodinger's equation 3297 

and solving 
n 

[ i k ( z )C;  =Gi, i = 1, . . . , n, j = O , . .  . , J o - l ,  (2.43) 
k = l  

for the C:. Thus 
n 

F:(z) = (EbIF,,(z)lE~) = C;G;*, i , j = O  , . . . ,  J(,-l, (2.44) 
k = l  

where * denotes complex conjugation. The required finite matrix approximation for 
d ( z )  is 

&':(z) = ( E ;  ldn(~)l€h) = (Eh IXe,+ ( - H o ) l ' z C n  (~)(-Ho)' /~1Eb) 

(2.45) 

The convergence of this method is assured by noticing that if the Idk) are normalised 

(dLlA21dJ)= (dL, #')=SI, (2.46) 

according to 

then (2.35) becomes 

(2.47) 

where the { I q 5 k ) } k E N  span the closure with respect to ( 9 ,  e )  of the domain of A .  For 
(E,-z)>O, (2.47) has a unique solution. A sufficient additional condition for the 
convergence of (cy lAl f,,) to (a  lAl f )  is the compactness of A-' with respect to ( a ,  e )  

on the closure of the domain of A. In  the case of the anharmonic oscillator A will 
be positive bounded below and unbounded above with discrete spectrum. This is 
sufficient to ensure convergence of the cy, (2)'s to their respective cy (2)'s (Mikhlin 1964, 
Singh 1977). 

Given the matrix d i ( z  ) and the functions a ,  ( z )  it remains to show that the functions 
& ( z )  defined by (2.25) have the required properties of P ( z ) .  This Singh does by 
constructing a matrix 28 i ( 2 )  from d i ( z )  with eigenvalues Pn ( z )  and the same eigenvec- 
tors as d : ( z ) .  In addition the Pn and dp,/dz are all positive in (-m,E,), showing 
that the cy,(z) each have, at most, one fixed point in (-00, E J .  These fixed points are 
moreover stable. The Pn ( z  1's are, however, singular at z = E ,  unless cy, ( z )  + E ,  quickly 
enough as z +E,. Finally we note that the 'approximate trial wavefunction' associated 
with & ( z )  is 

J o - 1  

(2.48) 

and is an estimate of the eigenvector of H corresponding to the energy E = 2 :  such 
that P n ( z : )  = 1. 

J 1/2 
l z ) n  = c (--Eo) (EbIP"(Z))If:,) 

J = ( I  

2.3. Comparison with Lowdin 's bracketing function technique 

The Singh procedure, described in 92.2, is, at least superficially, similar to the 
partitioning technique of Lowdin (1962, 1965a, b) based on a bracketing function. 
(For recent reviews see Reid 1976, Abdel-Raouf 1982.) 
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The Lowdin scheme centres on the reduced resolvent? (see e.g. Reid 1976) 

T ( z )  = O(Z - OHO)-’O, (2.49) 

where 0 = 1 -P with 
J c , - ‘  

P =  c 14kH4kl. (2.50) 

The operator P is a projection operator into some appropriate ‘reference space’. The 
‘bracketing functions’ f ( z  ) are the eigenvalues of 

F ( z )  = P[H + H T ( z ) H p  (2.51) 

associated with Image(P). These functions have fixed points for z E a ( H ) ,  singularities 
corresponding to the spectrum of OH0 associated with Image(O), and negative 
gradients. Further, the singularities and fixed points of the f ( z )  are subject to the 
same sort of overlap conditions with Image(P) as those found in the Singh scheme 
(Wilson 1967). Thus the functions f ( z )  have similar properties to the functions a 
introduced in (2.25), though f and a are clearly not identical. For instance, the 
gradients of the a’s are positive under the stated assumptions about the spectrum of 
H,, and E,. 

Similarly, Singh’s functions p ( z  ) are somewhat analogous to the eigenvalues w ( z )  
of 

W ( z )  = P(z  -H)- - ’P  (2.52) 

associated with Image(P), e.g. compare figure 1 with figure 1 of Lowdin (1965b). On 
the other hand, the p functions differ from the w ( z ) ’ s  in three significant respects. 
Firstly, the gradients of the p functions are opposite in sign to those of the w ( z ) ’ s .  
Secondly, the fixed points of the bracketing functions f(z) are determined by the 
singularities of the w ’ s  while it is the zeros of p - 1 that determine the fixed points 
of the a’s. Thirdly, the singularities of the bracketing functions are determined by 
the zeros of the w’s.  In contrast, the singularities of the p’s force the divergence of 
their respective a functions. These differences are due to the fact that the w’s  appear 
in the denominators of the f’s (Lowdin 1965b). On the other hand, the p’s are more 
directly related to the a’s. 

The factor of (-Ho)1’2 appearing in (2.12) can now be seen as a non-orthogonal 
projection which lends uniformity to the important values of the p functions. This 
point will be discussed further in 9: S .  

While one can thus draw some analogies between the technical aspects of the 
formalisms of Lowdin and Singh, these should not be allowed to obscure what is a 
fundamental difference in philosophy. In the Lowdin scheme, the fixed point of the 
bracketing function is not explicitly calculated but rather the bracketing function (or 
in practice an approximation to it, see appendix 2) is evaluated at a known upper 
bound on the required eigenvalue. Singh’s method, however, attempts to find the 
fixed point. In addition, the Lowdin method attempts to approximate all the fixed 
points of a single bracketing function (Jo = 1 )  to  obtain the energy lower bounds. The 
Singh method, on the other hand, bounds larger energy eigenvalues by enlarging the 

t In earlier work (e .g .  Lowdin 1962, 1965a, b) T is defined as O ( a  +O(E-H)O]- ’O  where a is an 
arbitrary constant other than zero. We follow Reid (1976) and use the simpler form which is equivalent 
to the earlier. In order to agree with our earlier notation we have interchanged 0 and P compared with 
the notation of Reid and Lowdin. 

k -0 
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reference space and finding the smallest fixed points of the set of (Y functions generated. 
This is also possible in the Lowdin scheme (Lowdin 1962, Wilson 1967, Abdel-Raouf 
1981), but appears not to have been fully exploited. How the two methods fare in 
practice is a question we address in 8 4.2. 

3. The anharmonic oscillator 

As a test of the practical significance of the theoretical developments of $ 5  2.1 and 
2.2, we consider an anharmonic oscillator with Hamiltonian 

(3.1) H = (-d2/dX2 + x 2 ,  + Ax4, 

which we decompose as 

H,= -d2/dx2+x2 

and 

V = Ax4. 

(3.2) 

(3.3) 

The state spaces of both H ,  and H divide naturally into two sectors of well defined 
parity. We restrict attention to the even parity sector. 

The eigenvalues and eigenvectors of Ho are given by (see e.g. Schiff 1968) 

and 

&(x)  = (XIEL) =c,  e-X2’2H21(x), i = o ,  1 , 2 , . .  . ,  (3.5) 

where HI (x) are the Hermite polynomials and c, = 2-‘[(2i)!]-1’2~-1’4. In this basis 

(Et  1 VIEL)/A 

=$(2i +5) (2 i+4) (2 i+3) (2 i+2)] ’ /2S ,+2 ,J  

t t ( 4 i  +3)[(2i +2)(2i + 1)]”’8,+1,, 

+ ( 8 i 2 + 4 i +  1)8,,+:(4i+1)[2i(2i- 1)]”’8, 

+:[2i(2i - 1)(2i - 2)(2i - 3)]”’6,-2.,, (3.6) 
so that H is a band matrix of lower band width two. This band character is essential 
to the finiteness of the Bubnov-Galerkin approximation if (A$,IAJ/,) is to be calculated 
in the {IE:)} basis. Otherwise an assumption similar to a special choice (Bazley and 
Fox 1961) is needed to provide a finite basis in which (Aq5’1Aq5’) can be calculated. 

To implement the bounding procedure described in 8 2 we chose the first n (even 
parity) eigenstates of Ho to span the manifold Spanksl, ,n{ lq5k)} ,  the actual set { I C $ ~ ) } ~ = ~  
being calculated by a Gram-Schmidt orthogonalisation of {(Eb)}:= with respect to 
the bilinear form on A’. This requires the calculation of inner products of the form 
(A$,IA$,) which in turn requires knowledge of N = n 1 2  unperturbed eigenstates of 
Ho and the matrix elements of A between them. This number, N, of basis elements 
necessary for the calculation will, in 8 4, be an important criterion in comparing the 
Singh method with other bounds. 

Next the number Jo  of basis elements projected out of Ho is chosen together with 
an appropriate E ,  satisfying (2.26). Since H,, has a positive spectrum it  is necessary 
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to shift its spectrum, along with E,, in such a way that the J o  low-lying eigenstates of 
Ho acquire negative energies. A shift of E,  s -E, is sufficient for this purpose. Once 
the desired fixed point in (-co,E,) is found the energy background E, is removed 
from the estimate to obtain the actual bounds to the energies of (3.1). The fixed 
points of the a , ( z )  were found using a modified Muller method (Blatt 1975) to carry 
out an inverse interpolation on a , ( z )  -2 .  This usually required fewer evaluations of 
a , ( z )  than a simple fixed point iteration. 

Before comparing the Singh method results with those of alternative methods we 
consider two preliminary questions regarding the sensitivity of the fixed points 2: to 
choices of E,  and the negative bias E,. 

Figure 2 is a plot of the ground state energy estimates for A = 5 against E, with 
E,  chosen so that 

E,  - E,= 4.9.  (3.7) 
Adjusting E, in this way effectively slides the whole calculation along the real axis. 
We see that the estimates show, for modest N, small variation relative to the error 
in the estimate itself. The small N estimates can, however, be improved significantly 
by choosing E, as large as permissible. The value of E, cannot be made so large that 
the biased E ,  becomes greater than zero, for then the positive definiteness of A may 
be lost. Consequently E, is chosen to slide all subsequent calculations along the real 
axis in such a way that the biased value of E,  becomes zero. The operator A remains 
positive definite for A > 0 in this case, since V > 0. 

Figure 2. Variation of estimates of ground state energy for A = 5 with the value of the 
energy bias E,  chosen for the calculation. The unbiased value of E,  is 4.9 and the arrows 
locate an accurate upper bound of 2.018 340 65 which is accurate to the indicated figure. 

Figure 3 is a plot of the estimates obtained for the ground state of H for A = 5 
against the unbiased values of E, chosen for the calculation, i.e. the values of E,  
before the bias of E,=-E, is applied to the system. Each time E,  crosses an 
unperturbed energy Eh, the associated eigenvector /E:) is included in Image(Po). 
Even so the estimates show continuously increasing behaviour until Image(P,,) 
becomes too big for the chosen Iq5k) set to handle. This occurs when Jo exceeds n .  
It should be noted that each time a new element is added to  Image(Po) the set of 
equations (2.43) must be re-solved for the extra vector G'". In addition the extra 
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Figure 3. Variation of ground state energy estimates for A = 5 with the unbiased value 
of E,  chosen for the calculation. E, is chosen to slide the calculation along the real axis 
in such a way that the biased value of E ,  becomes zero. 

elements of fil'(.z) must be calculated according to (2.44). This has to be performed 
each time d : ( z )  is required for a particular z .  

The estimates quoted in figure 4 and the tables of D 4 have been calculated using 
values of E,  which were as large as practical without making Image(Po) unnecessarily 
large. For example, to find the ground state estimates in figure 4 the unbiased value 
of E ,  was chosen as 4.9 so that the dimension of Image(Po) was one. If, on the other 
hand, an eigenvalue E' crossed the next unperturbed level El:' then the unperturbed 
state IEL+') is included in Image(P,) and the unbiased value of E, is set to a value 
slightly smaller than E::*. This occurs in table 2 for the j = 2 (quantum number = 4) 
eigenvalue estimates. 

N = I 2  
10 
0 

6 

L 

t I  

l o  4 10 2 0  30 LO 5 0  

A 

Figure 4. Dependence of the ground state energy estimates upon N and A, compared 
with an accurate upper bound. 
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We now turn to the general behaviour of the estimates. The plot in figure 4 shows 
the A dependence of the ground state estimates for several different values of N .  
These are compared with an accurate upper bound obtained by finding the smallest 
eigenvalue of the 60 x 60 matrix 

(6lfm), i , j = 0 ,  1 , .  . . , 5 9 .  (3.8) 

This upper bound agrees with the results of Biswas et a1 (1973) to at least 14 figures. 
The first thing to note is that, although the estimates worsen with increasing A ,  

they never actually diverge as would occur with a naive application of perturbation 
theory. The glitch around N = 10 appears to be a characteristic of the model rather 
than a characteristic peculiar to this approximation, a similar effect also being found 
in the sequence of Rayleigh-Ritz upper bounds obtained from matrices similar to (3.8). 

0 0 5 1  

Figure 5. Error difference between the approximate Singh wavefunction and an accurate 
Rayleigh-Ritz wavefunction (see text) for  (n = 4 ,  N = 6 )  (-), [ti = 5 ,  N = 7)  ( - - - - - )  
and (n = 6, N = 8 )  [ -  - )  calculations. 

In  figure 5 the differences between the wavefunctions given by (2.48) and the 
60-parameter ground state of (3.8) are plotted in configuration space. The comparison 
is for a few small values of N at A = 5 .  The first plot shows how G2 dominates the 
error in the four-parameter wavefunction generated by an N = 6 calculation. In fact 
qj2 dominates the wavefunction errors of the N = 4 , 5 , 6  calculations. The second of 
the plots shows significant contributions by G3 to the errors of the N = 7 calculation 
whilst the last plot shows G3 quite suddenly dominating the errors in the N = 8  
(six-parameter wavefunction) calculation. 
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4. Numerical comparison with other methods 

4.1. Bazley and Fox 

Table 1 compares the results of the present method with those obtained by Bazley 
and Fox (1961) using the method of intermediate Hamiltonians in conjunction with 
special choice. 

As explained in appendix 1, the Bazley-Fox method applied to the anharmonic 
oscillator requires the same input information as the Singh scheme, that is the first n 
columns of the matrix 

(ELIVIEL). 

Since this is a band matrix it is sufficient to consider an N x n matrix VN,. The n x n 
matrix formed by the first n rows of VNn ( V,,) must be inverted and the matrix product 

A ( vN, ( v,,, I-' G, ) (4.1) 
calculated. Here + denotes the coiljugate transpose. To the N x N matrix of (4.1) is 
added the diagonal matrix of H,, to form an intermediate Hamiltonian which is a 
lower bound to (3.1). In  the present case the non-diagonal part of this intermediate 
Hamiltonian is an N x N matrix which differs from the matrix 

( E ~ , I H I E : A  i , j = O , l ,  . . . ,  N - 1 ,  (4.2) 
by a 2 x 2 subarray of the matrices in the bottom right-hand corner of these arrays. 
The computational effort involved in finding this 2 x 2 matrix is comparable to the 

Table 1. Comparison of Bazley and Fox and Singh lower bounds for the first three even 
parity levels of the anharmonic oscillator (3.1) using N = 5 unperturbed eigenstates. 

Lower bounds Upper bound 
Quantum Unbiased (exact to no of 
number=2j  E ,  A Bazley and Fox Singh figures quoted) 

2 

4 

~ ~~~~~ ~~~ ~ ~ ~ ~ 

0 4.99 0.2 
0.4 
0.6 
0.8 
1 .0 

12.99 1 .0 

8.99 0.2 
0.4 
0.6 
0.8 
1.0 

12.99 1 .0 

12.99 0.2 
0.4 
0.6 
0.8 
1 .o 

1.118255 
1.204 738 
1.275 773 
1.336 760 
1.390 301 
1.390 301 

6.260 404 
6.979 830 
7.505 763 
7.942 661 
8.330 586 
8.330 586 

12.225 85 
14.030 37 
14.906 30 
15.344 32 
15.629 53 

1.1 16 848 
1.200 829 
1.269 843 
1.328 079 
1.377 591 
1.389 082 

6.230 901 
6.886 007 
7.357 396 
7.732 751 
8.026 231 
8.327 684 

12.075 909 
12.719466 

a12 .99t  

1.1182926544 
1.204 810 3274 
1.275 983 5663 
1.337 545 2081 
1.392 351 642 
1.392 3.5 1642 

6.277 248 617 
7.072 598 726 
7.689 565 295 
8.205 677 392 
8.655 049 958 
8.655 049 958 

12.440 601 8 
14.368 912 59 
15.823 505 46 
17.022 827 08 
18.057 557 44 

+ T h e  fixed point was too close to 12.99 to be clearly distinguishable. E ,  cannot be increased significantly 
here without increasing N .  
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effort involved in solving the set of equations (2.43) and calculating &':(z' for JO = 2. 
Computer central memory requirements are of primary importance in this type of 
calculation and from this point of view it is the solution of these large sets of linear 
equations that causes the major problems in implementing all three methods compared 
in this paper. 

If only a few low-lying eigenvalue estimates are required, the Bazley-Fox inter- 
mediate Hamiltonian eigenvalue problem could be handled efficiently with a Lanczos 
algorithm. This allows a rough comparison to be made between the calculations 
involved in finding a few eigenvalues of the Bazley-Fox intermediate Hamiltonian 
and the Gram-Schmidt orthogonalisation used to find {IC$ ')}; = 1. 

It should be noted that the Gram-Schmidt process is not entirely necessary to the 
success of the Bubnov-Galerkin approximation (Mikhlin 1964), but it does reduce 
the time and storage required to set up the equations (2.43) for each new value of 2. 

Since the equations (2.43) will generally be set up often in the search for z *  the 
present choice of {IC$ ')}:= would seem reasonable, despite the initial overhead 
involved in the calculation of the IC$') and the matrix elements of A between them. 

The above discussion shows, at least on this model, that the computations involved 
in the Bazley-Fox method, implemented as described, are roughly equivalent to a 
subset of the computations involved in the Singh approach. This implies that the 
Bazley-Fox method is not only more accurate than the Singh scheme, as seen in table 
1, but can also be arranged to require less computational effort. 

P G Hornby and M N  Barber 

4.2. LowdinlReid 

Tables 2 and 3 are a comparison of the Singh scheme with an approximate reduced 
resolvent method of Lowdin as applied to the anharmonic oscillator by Reid (1965). 
The approximation itself is accomplished by applying the exact reduced resolvent 
formalism to an intermediate Hamiltonian obtained from (3.1) by doing an inner 
projection on V. This turns out to be the same intermediate Hamiltonian as that used 
by Bazley and Fox (see appendix 2). A consequence of this is the fact that the fixed 
points of the bracketing function obtained from the intermediate Hamiltonian are 
lower bounds to the fixed points of the bracketing function obtained from the Hamil- 
tonian (3.1). The scheme then proceeds by presupposing an upper bound to the 
eigenvalue required and using this upper bound to construct a lower bound by 
evaluating the bracketing function of the intermediate Hamiltonian at the upper 
bound. The value of this approximate bracketing function at the upper bound is a 
lower bound to the fixed point of the approximate bracketing function and con- 
sequently a lower bound to the corresponding eigenvalue of (3.1). We note that this 
also means that the lower bound so obtained will always be worse than the lower 
bound obtained from the intermediate Hamiltonian. 

The approach also harbours another problem: it is possible for the eigenvalue of 
the intermediate Hamiltonian to be such a bad approximation to the desired eigenvalue 
of the original Hamiltonian that the upper bound to the desired eigenvalue could lie 
very close to a singularity of the approximate bracketing function. Indeed, it is 
imaginable that the approximate bracketing function evaluation at the upper bound 
could pick up the wrong branch of the approximate bracketing function entirely 
(Lowdin 1965b). This is the cause of the peculiar LowdinlReid estimates for the 
j = 2 (quantum number = 4) estimates in the N = 7 calculations in table 2. No such 
eigenvalue ordering problem is encountered in the Singh scheme since the excited 
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Table 2. Comparison of Lowdin/Reid and Singh lower bounds for the first three even 
parity levels of the anharmonic oscillator (3.1) using N = 7 unperturbed eigenstates. These 
bounds should be compared with the exact upper bound results in table 1. 

Lower bounds 
Quantum Unbiased 
number=2j  E ,  A Lowdin/Reid Singh 

0 4.99 0.2 
0.4 
0.6 
0.8 
1.0 

20.99 1 .0 

2 8.99 0.2 
0.4 
0.6 
0.8 
1 .0 

20.99 1.0 

4 12.99 0.2 
16.99 0.4 

0.6 
20.99 0.8 

1 .0 

1.118292 
1.204 791 
1.275 909 
1.337 397 
1.392 131 
1.392 131 

6.276 978 
7.070 812 
7.677 753 
8.163 597 
8.552 989 
8.552 989 

12.370 33 
13.034 27 

8.879 68 
7.589 51 
3.354 64 

1.118 284 
1.204 350 
1.273 727 
1.332 221 
1.383 341 
1.392 171 

6.267 420 
7.045 157 
7.580 353 
7.906 090 
8.120 262 
8.595 571 

12.141 767 
14.109470 
15.323 326 
16.667 507 
17.615 728 

Table 3. Comparison of Lowdin/Reid and Singh lower bounds for the anharmonicoscillator 
(3.1) using N = 22 unperturbed eigenstates. The bracketed figures are those that differ 
from a 20-dimensional Rayleigh-Ritz upper bound. This upper bound is presumably much 
more accurate than these lower bounds. 

Lower bounds 
Quantum Unbiased 
number=2j  E ,  A Lowdin/Reid Singh 

2 

0 4.99 0.25 
0.5 
0.75 
1.0 

40.99 1 .0 

8.99 0.25 
0.5 
0.75 
1 .0 

40.99 1 .0 

4 16.99 0.25 
0.5 
0.75 

20.99 1.0 
40.99 1 .0 

1.141 901 839 539 14(98) 
1.241 854 059 651 (94) 
1.322 872 581 46(9 0) 
1.392 351 641 (545) 
1.392 351 641 (545) 

6.500 905 725 74(33) 
7.396 900 638 (80) 
8.083 870 9(20 5 )  

8.655 049 9(69) 
8.655 049 

12.991 025 904 8(83) 
15.136 845 7(57) 
16.740 9(40 7) 
18.057 5(59) 
18.057 5(59) 

1.141 901 839 539 l (2)  
1.241 854 059 6(22) 
1.322 872 58(1 29) 
1.392 351 6(39 1) 
1.392 351 641 (35) 

6.500 905 725 7(029) 
7.396 900 6(26 19) 
8.083 870 (21 1 6) 
8.655 04(6 132) 
8.655 049 9(33) 

12.991 025 90(3 467) 
15.136 845 (251) 
16.740 (747 9) 
18.057 (417) 
18.057 5(44) 
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state estimates are obtained by enlarging the reference space Image(Po) rather than 
attempting to pin down more fixed points of a single a function: 

Computationally the Lowdin method has similar central memory requirements to 
the other two schemes. It involves the solution of an n x n set of equations comparable 
to the set of equations (2.43) with .To= 1. However, the value of the bracketing 
function is required at one point only so that such a set of equations need only be 
set up and solved once. Thus no special basis, like {14k)}!=l, is needed. This makes 
the Lowdin scheme faster than the Singh approach. There is, however, the problem 
of calculating an upper bound to the desired eigenvalue of (3.1). The tighter this 
upper bound, the better the Lowdin lower bound obtained. This is in direct contrast 
to the Singh scheme, wherein the worse the effective upper bound E,, the better the 
lower bound. If we do something which is perhaps a little unfair to the Lowdin 
scheme, that is include an N x N  eigenvalue calculation for the upper bound in the 
Lowdin scheme as part of the calculation, then the Lowdin scheme’s computational 
difficulty approaches more closely that of the Singh approach for Jo  = 1. 

From this it would appear that the Lowdin scheme is more efficient in terms of 
accuracy per unit calculation than the Singh method, On the other hand, the Singh 
approach suffers no eigenvalue ordering problems and yields, by itself, an approximate 
wavefunction. Further, by increasing E ,  it is possible to make Singh’s method more 
accurate than the Lowdin scheme though, we suspect, the Singh estimates will always 
be less accurate than the corresponding Bazley-Fox estimates, at least for the anhar- 
monic oscillator. 

5. Discussion and assessment 

The formal manipulations leading to the eigenvalue equation (2.10) are common in 
the literature (see e.g. Reid 1976 and references therein). The Hamiltonian is decom- 
posed as a sum 

H = Hl-Hz (5.1) 

and the eigenvalue equation for H rearranged into a generalised eigenvalue problem: 

HzG(E)HzIE) = NzIE) (5.2) 
where 

G ( z )  = (HI - z)-’. (5 .3)  
This problem can in turn be viewed (see e.g. Abdel-Raouf 1982) as the extremisation 
of (41H2GH2/r$) subject to (41H21r$) being constant. If this constraint is introduced 
into the objective function, along with a Lagrange multiplier p ( z ) ,  (5.2) is replaced by 

HzG(zWzIz) =P(zWzlz)  (5.4) 
for z # E. The eigenvalues of H correspond to P (z  = E )  = 1 and the formal similarity 
with Singh’s formulation is evident. 

Usually HZ is taken as the potential term V and G the Green function of the 
diagonal, or kinetic, part Ho (Hall et al 1969, 1970). Singh, however, has made a 
novel choice by using part of H,, for H2.  Depending on the gradient of the p(z) ,  
lower bounds can be obtained by bounding p (z )  from above or below. In Singh’s 
case dpldz > 0 so that an upper bound to H2GH2 is required. If HZ is definite the 
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generalised eigenvalues have a variational characterisation. In fact, the replacement 
Ip(z)) =Hi/’ l z )  can be used to construct the eigenvalue equation 

H : / ~ G ( Z ) H : / *  I P ( Z N  = P ( z ) ~ ~ ( z ) ) .  ( 5 . 5 )  

The problem is that H : / 2 G ( ~ ) H : / 2  cannot, in general, be calculated, even on a 
subspace of the domain of This removes the possibility of using a direct 
Rayleigh-Ritz variational upper bound to p(z). The difficulty can be attributed to 
the use of the ‘complicated part’ of the Hamiltonian H in the Green function G(z). 
Singh, nonetheless, ingeniously constructs upper bounds to the p ( z )  using the method 
reproduced in S; 2.2. The significance of this bounding procedure is that it directly 
addresses the problem of approximating a seemingly intractable operator H:/2GH:/2.  
Furthermore the approximation is controlled. Clearly the utility of similar techniques 
in approximating G ( z )  arising out of other choices for H 2  and H I  could well bear 
investigation. 

We have mentioned that the Lowdin approximation quoted in this article is 
obtained by applying the exact reduced resolvent formalism to the intermediate 
Hamiltonians of Bazley and Fox. In Lowdin’s own opinion this is not a good approach 
(Lowdin 1965b, Reid 1976) but is excusable since the actual fixed point of the 
bracketing function is not sought. 

This naturally, however, raises the question as to whether the Singh approximation 
scheme ( S ;  2.2) is equivalent to applying the exact formalism ( 5  2.1) to an intermediate 
Hamiltonian. To explore this question set 

H:” = (-Ho)1/2Po, 

G ( z )  =(k- z ) - ’ ,  

so that 

B ( ~ )  = H : / ~ G ( Z ) H : / ~ .  

The operator I,, approximating I in (2.28) can be rewritten 

by using (2.32), (2.341, (2.35) and (2.38). 
To clarify (5.9) let 

and define 

Pfl = t I x k ) > [ ( X k I X r ) l - l ( X i I  
k , l = l  

so that p:  = pn. Equation (5.9) then becomes 
I,, = 11/2p,,Il/2, 

(5.6) 

(5.7) 

( 5 . 8 )  

(5.9) 

(5.10) 

(5.11) 

(5.12) 

clearly showing the projective nature of the Bubnov-Galerkin method as well as the 
lower bounding property of 

d, = xo + H Y 2  I, H :/2 . (5.13) 
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To continue the investigation we turn to the Aronszajn form of (5.12). Let 

l vk )=  (H-z) l4Jk)  (5.14) 

and define the Aronszajn projections 

together with 

0 ,"=1-p ; ,  o;+ =1-p;+. 

v, = i;P,"+ = PLi; = P,"FP,"+. 
Hence 

( 5 . 1 5 ~ )  

(5.16) 

We can recover B,,(z) from d , , ( z )  by reversing the derivation of d ( z )  from B ( z )  
in 9: 2.1. Now 

d, ( 2  ) = E,Po + Hi'* (- 1 + v,)H:'2 (5.17) 

so that a factor of z -Eu needs to be pulled out of 

-1 + i;, = ( Z  -€,)G,(z) (5.18) 

which also serves to define G,(z).  Expanding (5.18) yields 

(Z - Eu)G, (2) = - 1 + ( H  -Eu)(& - z)-'P,"+ 

= ( H  - z)-'[(z -H)(P,"+ + O,"+) + ( H  - E,)P,"+] 

= (Z  - E,)[(H - z)-IP,"+ + (E,  - z)-'O,"+], (5.19) 

so that 

= ( R - z ) - ' + ( E , - z ) - ' O ~ ~ O ~ + .  (5.206) 

Now E,  - z > 0 and for arbitrary (6) we have 

( E u - z ) - ' ( ~ / O L ~ O , " + ~ ~ ) = ( ~ ~ i ; ~ ~ ) ( E , - z ) - ' s o ,  (5.21) 

so G,(z) s G(z)  for z < E ,  as expected. 
Manipulations such as these using projections like P," and p,, can be found in Gay 

(1964), Bazley and Fox (1966) or Wilson (1965). These all yield expressions like 
(5.20) for G ( z ) .  However, we have not been able to reproduce a simple intermediate 
Hamiltonian from the various expressions for G,(z) we have tried. 
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On the other hand, (5.206) does make a start toward an error analysis for the 

In addition, this equation also confirms the convergence property of the estimates 
method and confirms the observed E,  dependence of the estimates. 

as well as the singularity structure of the eigenvalues Pn(z) of 

B,,(z) =H:"G,(z)H:'* (5.22) 

discovered by Singh. 
To finish we display the form that the original Schrodinger equation takes after 

the Singh approximation has been applied. Let z :  be such that pn (2:) = 1 and define 
Iz) ,  according to (2.48), that is 

12)" = G n ( Z ) H Y 2  I P n ( Z ) ) .  

Substituting (5 .20~1)  yields, after some algebra, 

(H  - z ) i z ) ,  = (fi - H 2 - z ) ( f i  - Z ) - ' [ l +  (fi -E,)(E,")-'O;+]H:'' I P n ( Z ) )  

= [ 1 - P , , ( Z )  + (E,  - Z ) - ? f ?  -E,)O;+lH:'2 I P n ( Z ) ) ,  

so that finally 

(H-z:)lz:)" = ( 2 :  -E,)-'(fi-E,)O;+PJI:,/2P,~p"(Z:)) 
= ( 2 :  -EJ", f?  -E,)O"-PJIoPolz:),. 

(5.23) 

(5.24) 

(5.25) 

In part this final section has attempted to relate the Singh approximation to other 
developments. It appears that the Singh scheme is a distinct approximation with some 
similarities to other methods. It is similar in assumptions to the Bazley-Fox method 
in that it requires special choice to make the Bubnov-Galerkin approximation tract- 
able, and it has a superficial similarity to the Lowdin method (see in particular the 
discussion in Wilson (1967)). 

In addition the p functions are, in theJo+ 00 limit, directly related to a renormalisa- 
tion of configuration space (Hall et a1 1969, 1970). In this context the p functions 
are regarded as variational parameters which are used to minimise the Rayleigh-Ritz 
quotient of some trial wavefunction which undergoes a renormalisation of configur- 
ation space as p varies. In the present case the Rayleigh-Ritz quotient obtained from 
(2.14) is 

(Z lH Iz ) l ( z l z )=z  + P ( z ) ( l  - P ( z ) ) I P ' ( z )  (5.26) 

where (2.131, (2.14), (2.15) and (2.18) have been used. 
Numerically the results presented in $9: 3 and 4 show that the procedure avoids 

the eigenvalue ordering problem that can arise in the Lowdin technique used by Reid. 
However, the results are less accurate and involve a greater degree of computational 
effort than the classical Bazley and Fox approximations. 
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Appendix 1. BazleyIFox bound 

Let {[pi)}::: define a submanifold of the Hilbert space of the system in question and 
define 

together with 

( A l . l )  

(A1.2) 

then 

HN = HO + VPE- (Al.3) 

will be an operator lower bound to H whenever V a 0. Special choice then searches 
for Ip i )  such that 

(A1.4) 

The band structure of the potential term displayed in (3 .6 )  allows the choice 

/Pi) = IEI). (A1.5) 

This means N = n + 2 in this case so that pi[ is essentially the n x N  matrix V:N 
mentioned in equation (4.1). Thus 

(A1.6) 
(0  otherwise, 

from which the discussion in $4.1 follows. 

Appendix 2. Approximate resolvent approximation for bracketing function 

As defined in (2.51) the bracketing function is not a practical representation. The 
particular approximation used by Reid (1965) to obtain a tractable problem involves 
settingJo = 1 and replacing H in (2.49) and (2.51) with HN defined by (Al . l ) ,  (A1.3) 
and (A1.5). This defines a tractable approximate bracketing function fN(z) which is 
exact on HN. The actual expressions for fN(z) are 

(A2.1) fN (2) = (4 O/H"( 1 + T&")ld") + a ' D  -la 

where 

T,, = O(Z - OH~O)-*O,  14') = ]E:) ,  (A2.2) 

The D and a are given in terms of the {lpl)}Yl,i appearing in equations ( A l . l )  and 

(A2.3) 

and 0 are defined by (2.50). 

(A1.2). They are 

aj = (pi1 v(1+ ~ & o ) / d ' )  
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and 

D,, =(Pllv(l-T"v)IP,). (A2.4) 

Once again the special choice (A1.5) can be made so that the basic input information 
must be sufficient to calculate 

(A2.5) 

This again requires knowledge of N = n + 2 eigenstates of Ho and the matrix elements 
in the top left-hand N x n subarray of the matrix of V. 

(El, I VT,, VIE:,) = ( v4, I To1 w, ), i , j = O , .  . . , n  -1. 
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